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Abstract
We report on numerical calculations of the Fano parameters characteristic of
non-symmetric resonance profiles in the electron transport through a waveguide
attached to an irregular cavity. The distribution of Fano parameters is calculated
for this chaotic scattering system with preserved time-reversal symmetry. We
note the role played by the parametrization of the background conductance
in comparing random matrix theory predictions for the Fano parameters with
numerical or experimental data. Our calculated distribution agrees well with
random matrix theory predictions.

PACS numbers: 05.45.Pq, 72.10.−d, 73.23.Ad

1. Introduction

Characterizing resonances in electron transport through mesoscopic cavities has been a subject
of great interest in the last two decades [1]. In many cases, resonance profiles are well
approximated by Lorentzians. As first pointed out by Fano [2], the line shape of an individual
resonance may differ substantially from a Lorentzian profile due to interference between direct
and indirect interaction pathways, giving rise to Beutler–Fano profiles. Such profiles have
been observed in many different nuclear, atomic and molecular scattering experiments, and,
very recently, also in mesoscopic electronic transport experiments [3, 4]. The occurrence of
Beutler–Fano resonances is a direct indication that the electron transport is at least partially
coherent and that there are both resonant (indirect) and non-resonant (direct) paths involved
which interfere. The shapes of the resonance profiles reveal information on the degree of
coherence and related phenomena [5, 6].

In this paper we study a chaotic scattering system composed of an electron waveguide
connected to a mesoscopic cavity, as illustrated schematically in figure 1. The diameter of the
cavity and of the waveguide is smaller than the phase-coherence length of the electron. This
means that quantum interference plays an important role in the electron transport through this
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Figure 1. Schematic illustration of the system studied.

system, which is manifested in the occurrence of the Beutler–Fano resonance profiles. We
neglect absorption, inelastic scattering and interaction effects, and concentrate on the coherent
electron transport. We calculate the conductance as a function of energy and hence, through a
fitting procedure, we extract the Fano q parameter and the width for each resonance in a given
energy interval. We thus obtain the probability distribution for the q-parameter in the same
way as an experimentalist would extract the distribution from their data. To obtain reliable
statistics we in practice use the Anderson localization model to simulate the cavity which
enables us to average over the disorder as opposed to the energy.

Recently, the statistics of the Beutler–Fano profiles were studied analytically [7, 8] both
for chaotic scattering systems and for atomic and molecular photoexcitation [14, 15]. For
scattering systems the predicted q distribution [7] is based on a random matrix theory (RMT)
of the quantum transport [9], where the indirect pathways are assumed to cover ergodically the
internal system, as is the case in classically chaotic quantum systems [10, 11]. We compare
the numerically determined q distribution for our system, which should be typical of that
for a chaotic scattering system, with that derived from RMT. We find that the numerically
determined distribution is strongly influenced by the difficulty in finding resonances with very
narrow widths, a feature shared by any actual experiment. We show how this difficulty can
be taken into account in the RMT theory by introducing an effective cut-off value for the
smallest widths, and we discuss the implications of our findings with respect to comparing
RMT with real experimental data for the q distribution. We find good agreement with the
RMT predictions.

The paper is organized as follows. In section 2, we briefly outline the theory used. In
section 3, we present the numerical procedure and give the details of the specific model we
have used. In section 4 we discuss our numerical results, and finally give the conclusions in
section 5.

2. Theory

Electron transport through the system illustrated in figure 1 gives rise to Beutler–Fano
resonance profiles due to the interference between ‘resonant’ and ‘non-resonant’ transmission
paths along the waveguide. The resonant paths enter the cavity and explore it ergodically
before re-entering the waveguide. The non-resonant paths, on the contrary, pass the cavity
or enter it for a time shorter than the ergodic time. The transmission amplitude t can be
written as a sum of the resonant and non-resonant contributions t = tr + tn. The resonant



Statistics of Fano parameters in a mesoscopic billiard 10821

contribution tr is determined by the coupling of the discrete energy levels of a closed cavity and
the continuum spectrum of the waveguide [9]. Due to the coupling, the discrete energy levels
become resonances with Lorentzian profiles. Near each resonance energy E0 the resonant
transmission amplitude can be expressed as

tr = zr�

2(E − E0) + i�
, (1)

where � is the resonance width and zr is an excitation amplitude. zr gives the peak amplitude
for the transmission in the absence of direct transmission, i.e., it is related to the probability
of exciting a particular resonance in the cavity.

The non-resonant contribution tn is independent of the discrete energy levels of the cavity,
and is therefore a slowly varying function of energy. By assuming that it is a constant over the
resonance region, one obtains the Beutler–Fano form

g(E) = |t |2 = |tn|2 |2(E − E0) + q�|2
4(E − E0)2 + �2

, (2)

where g(E) is the dimensionless conductance, and

q = i + zr/tn (3)

is the Fano parameter. The fluctuations in q are therefore dependent on the fluctuations in zr .
For simplicity, we restrict our attention to the energy regime where only one channel is

open, i.e., there is only one propagating mode in the waveguide. In this case, the scattering
matrix S is a 2 × 2 matrix:

S =
(

r ′ t

t ′ r

)
, (4)

where r ′, t ′ (r, t) are the reflection and transmission amplitudes of an electron coming from
the ‘upper’ (‘lower’) arm of the waveguide.

To make a connection with RMT the authors in [7] parameterize the S matrix by
decomposing it into resonant and non-resonant parts. The non-resonant part is given by
the average scattering matrix S̄. It can be written in terms of its polar decomposition:

S̄ = U
√

1 − T UT , (5)

where U is a 2 × 2 unitary matrix and T = diag(T1, T2). The parameters T1 and T2 are called
the sticking probabilities [12], and they represent the probability of the electron to enter the
ergodic paths from the ‘eigenmodes’ given by the columns of the matrix U. S̄ is here assumed
to be symmetric, which is always true in the case of preserved time-reversal symmetry. S̄ is a
subunitary matrix, which is a sum of the contributions from the direct paths passing the cavity.

The remaining, resonant part of the scattering matrix is written as follows:

δS = S − S̄ = U
√

T
1

1 + S0
√

1 − T
S0

√
T UT (6)

where S0 represents the scattering matrix of the cavity.
Representing S0 in terms of its Green function, and assuming T1, T2 � 1 which justifies

the assumption that the resonances are narrow and well separated, it was shown in [7] that the
S-matrix near an isolated resonance can be written as

S = S̄ + δS, (7)

where S̄ � UUT and

δS(ε) = −U
2i�

√
T ψ †ψ

√
T

4πε + i2π�
UT . (8)
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ε = E − E0 measures the energy from the resonance position and ψ = (ψ1, ψ2), where ψi

are the wave-function amplitudes at the contact between the waveguide and the cavity. � is
mean level spacing.

Assuming that both ψ1 and ψ2 are normally distributed for a chaotic system, one can use
RMT to derive the distribution of q parameters from the above expression for the S-matrix
(see [7]). The type of statistics found will depend on the time-reversal symmetry (TRS) of the
system. We confine our attention here to systems with TRS, for which the Fano parameters
are real numbers. Following the notation of [7], we use the ‘normalized’ q-parameters,
q̃ = q/qmax, where qmax =

√
|tn|−2 − 1. The RMT predicted distribution for the q parameter

is

P(q̃) = 1

π

√
1 + α

1 − q̃2

1 + α(1 − q̃q̃a)/2

1 + α(1 − q̃q̃a) + α4(q̃ − q̃a)2/4
, (9)

where α = T2/T1 − 1, qa = q̃aqmax, with

qa = i(U11U21 − U22U12)/(U11U21 + U22U12). (10)

qa is a real number due to the unitarity of U and represents the typical q, i.e., it is the position
of the maximum in the distribution of q parameters. T1 and T2 are chosen to be in ascending
order, T2 � T1. qmax is the maximum possible value of q, given the constraint for the
conductance, g � 1, in the case of a single open channel. Equation (9) is obtained after
integrating over the distribution of the resonance widths �, which also fluctuate according to
RMT.

Equation (9) is valid only if T1, T2 � 1, i.e., when the opening to the cavity is small
compared to the width of the waveguide. This not only ensures that the resonances do not
overlap, but it is also important in the derivation of equation (7), where it is assumed that S̄

can be expressed without the sticking probabilities, i.e., S̄ � UUT .
The width of a resonance depends on the sticking probabilities and the wavefunction

amplitudes such that � = �1|ψ1|2 + �2|ψ2|2, where �i = Ti�/(2π). Assuming the
amplitudes are Gaussian distributed, one obtains the distribution of the widths in the presence
of TRS [7] as

P(�) = 1
2 (�1�2)

−1/2 exp(−�/4�1) exp(−�/4�2)I0(�|�1 − �2|/4�1�2), (11)

where I0 is the modified Bessel function. Note that if �1 = �2 this expression reduces to the
well-known χ2 distribution for the widths.

2.1. The average scattering matrix S̄

In order to interpret our numerical results, we briefly discuss the possible parameter values
given by the polar decomposition of S̄. As T1, T2 � 1, and S̄ � UUT we can write U as

U =
(

exp(iα) cos γ exp(iβ) sin γ

−exp(−iβ) sin γ exp(−iα) cos γ

)
. (12)

This is a general form of a 2 × 2 unitary matrix with determinant equal to unity. More
generally, the matrix elements can have an additional phase factor, which we can omit here
without loss of generality.

One obtains

qa = cot(α − β) (13)

q2
max = (1 − sin2 2γ sin2(α − β))/(sin2 2γ sin2(α − β)). (14)
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Figure 2. The system is composed of a rectangular cavity with an opening to an infinitely long
electron waveguide. The geometry is discretized by a regular square lattice with m × n + M × N

lattice sites. m is the number of sites connecting the cavity and the waveguide. Each lattice point
is associated with an on-site potential εk and each connection between the points by a hopping
parameter Vkk′ .

We remark that if cos γ = sin γ ⇒ γ = π/4, then qmax = qa , i.e., the maximum q
equals the typical q. This happens when |S̄12|2 = 1, that is, when S̄ is a scattering matrix of
a waveguide with one open channel (without the cavity). In that case, α − β = ±π/2. If
the waveguide includes a small hole to the cavity, then one expects that still |S̄12|2 � 1, and
qa � qmax. Our numerical results show that this is indeed what happens.

3. The model and the calculation of the S matrix

We approximate the Hamiltonian H of our system with the help of the tight-binding
representation:

H =
∑

k

εkc
†
kck +

∑
kk′

Vkk′c
†
kck′ , (15)

where the subscripts k denote the sites of a square lattice covering the geometry, as illustrated
in figure 2. c

†
k and ck are the creation and annihilation operators, corresponding to each site,

and εk is the potential energy. The hopping parameters Vkk′ are set equal to the energy unit, if
k and k′ denote the nearest-neighbour sites. Otherwise, Vkk′ are zero.

The on-site potentials εk are constant outside the cavity, i.e., inside the wave guides.
We set this constant to 4 such that the lower band edge lies at E = 0, when W = 0.
Inside the cavity, εk are uniformly distributed in the range [4 − W/2, 4 + W/2]. The
cavity is actually modelled by the Anderson model of localization [13], which is known
to show universal statistics for the energy levels and wave functions, when W is chosen in the
diffusive regime, below the localization threshold. Alternatively, the cavity could be modelled
by an irregular billiard, where the electron propagates ballistically. The advantage of the
Anderson model is that it is possible to compute the statistics from arbitrarily many samples,
each having different random potentials. It also allows us to apply a simple rectangular
geometry.
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The reflection and transmission amplitudes, and hence the S matrix, are calculated from
the matrix elements of Green’s function G = (E − H)−1 as follows [17]:

r ′ = −[1 − i2 sin θ〈1|G00|1〉] (16)

t ′ = i2 sin θ〈1|G01|1〉 (17)

r = −[1 − i2 sin θ〈1|G11|1〉] (18)

t = i2 sin θ〈1|G10|1〉, (19)

where sin θ = √
E − 2(1 − cos[π/(n + 1)]). G00, G01, G10 and G11 denote n × n blocks of

the full Green’s function matrix. G00 (G11) contains all the matrix elements Gkk′ with site
indices k, k′ of a single column in the left (right) arm of the waveguide. G01 and G10 contain
the elements corresponding to transmission between the two columns on the left and right
arms. The brackets 〈1| · |1〉 denote the matrix elements in the mode basis. For example,

〈1|G00|1〉 =
n∑

j,j ′=1

φ1(j)φ1(j
′)(G00)jj ′ , (20)

where φ1 is the first transversal mode in the waveguide. The modes are given by [17]

φα(j) = Aα sin[(απj)/(n + 1)] (21)

Aα =
{

j

2
+

1

2
Re

[
1 − exp(i2παn/(n + 1))

1 − exp(−i2πα/(n + 1))

]}−1/2

(22)

for α = 1, . . . , n.
To obtain G for the tight-binding lattice, we have applied the tight-binding Green function

technique, described in [17]. In this case, we separately computed the matrix elements for
Green’s function of the waveguide and that of the cavity, and applied Dyson’s equation to
obtain the matrix elements of the full Green function. For the cavity Green function, only
those matrix elements with site indices at the opening of the cavity are needed, which greatly
reduces the set of linear equations to be solved.

4. Results

We selected a suitably narrow energy interval [E − δE/2, E + δE/2] such that the interval
lies between the first and second threshold energies, E1 and E2, where [17]

Ei = 2(1 − cos((n − i + 1)π/(n + 1))). (23)

n is the width of the waveguide. By using a simple loop over seeds of the random number
generator, we looked for those realizations of the model, which have a resonance inside the
chosen energy interval, with δE � �, the mean level spacing. To ensure that there is no
sample-to-sample fluctuation in the direct transmission and reflection amplitudes and, hence,
S̄, the realizations were chosen such that the on-site potentials near the opening of the cavity
are always the same, i.e., they only fluctuate from site to site but not from sample to sample.
We can control the size of the sticking probabilities T1 and T2 by varying the size of the
opening to the cavity.

The resonance widths � and positions E0 were determined by fitting the total phase shift
sum [18] by

δ(E) = arctan

(
E − E0

1
2�

)
+ δbg(E), (24)
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Figure 3. An example of a resonance in one realization of the model. The rectangles show
the computed values of conductance g at different energies, and the solid line shows a fit of the
Beutler–Fano form. The fit gives the value of the Fano parameter q. The inset shows several
resonances at nearby energies.

where the background phase shift δbg(E) was approximated by a second-order polynomial.
The phase shifts δi are determined by the eigenvalues exp(2iδi) of the scattering matrix S, whose
matrix elements r ′, t ′, r and t are computed as described in section 3. The q parameters were
then obtained by fitting the Beutler–Fano function, equation (2), to the calculated conductance
data for each realization. An example of such fitting is shown in figure 3. The conductance is
obtained from the off-diagonal elements of the S-matrix, g(E) = |t |2 = |t ′|2.

For a system defined by n = 10,m = 3, N = 53,M = 20, E = 0.25 and W = 1.0
we calculated the scattering matrix S for many (∼107) realizations of the disorder potential,
and hence obtained S̄ the average S-matrix. In order to make sure that the parameters of
our model lie in the right regime for RMT to apply, we checked that the statistics of the
eigenfunctions of the Hamiltonian corresponding to the closed cavity follows the universal
statistics described by RMT. It is known that the wave-function amplitudes should follow the
Porter–Thomas distribution [19] in the presence of the TRS. We verified that this condition
is very accurately fulfilled for our system (see figure 4). As a further check, we calculated
histograms for the fluctuating part δS of the scattering matrix. This is obtained by subtracting
S̄ from the full scattering matrix S. δS is given by equation (6), where U, T1, T2 are obtained
from the decomposition of S̄. According to RMT, the matrix S0 represents uniformly
distributed symmetric unitary 2 × 2 matrices (circular orthogonal ensemble [9]). Figure 5
shows that this requirement is fulfilled in our system. We remark that the distributions are not
centred at zero, even though the ensemble average of δS vanishes due to the asymmetry of the
distributions.

As shown earlier qa and qmax can typically be very similar for the model we use. qa

can be made smaller than qmax by adding a potential barrier inside the waveguide such that
the random potential inside the cavity is extended from the opening to the opposite wall of
the waveguide, the width of the barrier being equal to m. This enhances the direct reflection,
reducing the sticking probabilities and the resonance widths.

We calculate many thousands of resonances and fit each of them to obtain the width �

and Fano parameter q for each of them. We show in figure 6 a histogram of the calculated
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Figure 4. Histogram of the wave function intensities for the same system as in figure 7. The
smooth line shows the Porter–Thomas distribution exp(−t/2)/

√
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Figure 5. Histograms of the fluctuations of the scattering matrix elements for the same system as
in figure 7. The solid lines show the corresponding distributions according to the RMT. They were
determined numerically by sampling S0 over the circular ensemble.

distribution of widths. It is apparent by the drop near zero that very small widths are largely
absent. This is so partly due to the finite resolution of the resonance searching algorithm,
and partly due to the difficulty in calculating the S matrix near the poles in the complex
energy plane (� gives the imaginary part of the pole). We can estimate a cut-off �c from the
histogram of the widths shown in figure 6, �c ∼ 1.9 × 10−5, below which we cannot go. In
a real conductance experiment a similar situation would arise as it would not be possible to
resolve resonances below a certain width. We will use this cut-off value �c below to determine
the RMT distribution for the q parameter in the presence of a cut-off.
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Figure 6. Histogram of the resonance widths. The smooth line shows equation (11) with
�1 ∼ 1.2 × 10−6 and �2 ∼ 2.5 × 10−5. These values give the same α = �2/�1 − 1 as in
figure 7.
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Figure 7. Histogram of the Fano parameters for a system with a geometry 3 × 10 + 53 × 20
and with a narrow potential barrier inside the waveguide. The solid smooth line shows
equation (9) with parameters α = 20, qa = 0.107, qmax = 0.36. The dashed line shows the
numerically calculated RMT distribution with an effective cut-off �c ∼ 1.9 × 10−5.

To compare the calculated distribution with the RMT prediction in equation (9) we need
to calculate T1, T2, qa and qmax. S̄ is calculated by averaging the S matrix over the very large
ensemble we have used. The polar decomposition of S̄ gives U and T1 and T2, and hence
qa and qmax. The maximum value, qmax, can be calculated easily from S̄, giving the value
qmax � 0.360 which agrees well with the numerical values for q. The parameter α is equal to
20. One additional parameter, namely �2 still needs to be determined. We used the formula
�2 = T2�/(2π), where T2 the sticking probability was obtained from the decomposition of
S̄ and � is the mean level spacing from the eigenenergy spectrum of the closed cavity. The
obtained value, �2 ∼ 2.5×10−5, is consistent with the � histogram, too. So, two independent
checks give the same value for �2.
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We show in figure 7 the histogram of computed values for the q distribution and compare
it with the RMT prediction from equation (9) assuming no cut-off in the width distribution.
We notice that the central peak lies much lower than in the histogram and the tails decay
more slowly. The dashed line in figure 7 shows the q distribution resulting from assuming
that there is an effective cut-off �c for narrow resonances, that is, all the resonances with
� < �c are omitted in the RMT ensemble. To calculate the RMT distribution with a cut-off,
we used equation (8) and took the amplitudes ψ1 and ψ2 randomly from a normal distribution.
Then we calculated � and q from ψ1 and ψ2 for given α and U using the formulae given in
section 2. We thus calculated the RMT distribution of q values, excluding those resonances
with � < �c. We checked that this gives the analytic distribution given by equation (9) when
we take �c = 0. As can be seen from figure 7 the RMT distribution with a cut-off agrees very
well with the numerically determined q distribution showing that it is important to incorporate
the effect of the missing resonances in the statistics.

5. Conclusions

We have studied numerically the distribution of Fano q parameters for a chaotic scattering
system by extracting the widths and q parameters from the calculated conductance. We have
checked that our model satisfies the main criteria assumed in RMT and we have compared
the numerical q distribution for a system with TRS to the theoretical predictions from RMT.
The RMT prediction depends on a set of parameters related to the background conductance.
These have been determined and very good agreement is obtained between the RMT theory
and the calculated distribution when a cut-off is introduced to eliminate resonances with very
small widths. A similar cut-off would exist in any real experimental situation as one would
not be able to resolve the smallest widths.
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